
Engineering Accessible Software
Arun Krishnavajjala

George Mason University
akrishn@gmu.edu

Kevin Moran
University of Central Florida

kpmoran@ucf.edu

Abstract—This paper discusses a research area at the intersec-
tion of Machine Learning, Software Engineering, and Human-
Computer Interaction research to create intelligent developer
tools for more accessible mobile applications. Our research goals
revolve around combining software engineering and accessibility
research to create developer facing tools that facilitate the
development of accessible software. We introduce MOTOREASE,
an innovative approach that utilizes computer vision and text
processing to identify accessibility issues in mobile app UIs
for motor-impaired users. The tool detects four motor-impaired
user-focused UI design guidelines: t ouch target size, expanding
sections, persisting elements, and adjacent icon distance, with an
average accuracy of around 90%. This represents a significant
step towards improving software accessibility for all users.

I. INTRODUCTION

Software plays a crucial role in our lives, impacting ev-
erything from web and smartphone applications to desktop
systems. The increasing dependence on critical software appli-
cations, such as banking and communication tools, highlights
the need for accessibility. People with diverse abilities often
face challenges in using software as it is currently designed.
The World Health Organization reports that 15% of people
have some disability, making software accessibility even more
important [1].

Efforts to improve accessibility have been driven not only
by ethical motivations but also by government policies. The
United States Government, through the American with Dis-
abilities Act (ADA) [2], requires public websites and services
to be accessible. Despite progress, research has shown that
there is still an abundance of accessibility issues in appli-
cations [4, 5, 9, 16–18, 22, 28, 30, 33]. Existing accessibility
guidelines and tools are often overlooked or difficult for
developers to utilize effectively.

Beyond providing equitable access to software for users
with a variety of backgrounds, accessibility features often
improve user experience more broadly, as many accessibility
guidelines are designed following the general principals of
universal design [3], in that the adherence to such guidelines
is more likely to lead to an improved user experience for all
users [29].

Software engineering research is constantly innovating how
software is made. Software testing and developer tools are
constantly evolving and are making their way into the acces-
sibility space. Software testing has been around for decades,
but has recently grown into a more complex field with the
use of computer vision and machine learning techniques to
automatically generate and run tests.

Our research leverages leading advancements in machine
learning, software engineering, human-computer interaction
(HCI), and accessibility research. It aims to create intelligent
developer tools that can integrate accessibility into the soft-
ware development process. Current accessibility research often
focuses on creating solutions tailored to specific disabilities,
with emphasis on low vision users. Research on Deaf and Hard
of Hearing (DHH) and motor-impaired users is comparatively
limited [6, 8, 10, 11, 21, 23, 25–27, 32, 34].

HCI research has been instrumental in understanding how
users with various abilities interact with their devices and
assistive tools. Software engineering research has also made
strides in testing frameworks and developer tools for accessi-
bility. Automated testing using computer vision and machine
learning is becoming more prevalent [7, 13, 24, 26]. Intelligent
tools can help developers identify and incorporate accessibility
features efficiently.

By bridging HCI, accessibility, and software engineering
research, we can create exciting opportunities to develop
accessible software. Leveraging data and intelligent tools, we
can address accessibility challenges during the developmental
and design stages, making software more inclusive for all
users.

II. RESEARCH GOALS

Given the abundance of inaccessible applications and the
lack of developer tools to address them, we have explored a
different approach, based on the creation of intelligent tools
that will help that will help developers efficiently improve
the accessibility of their applications. This goal is achieved
by combining the visual aspects of the screen along with the
underlying functionality of the screen to assist developers in
their pursuit to make more accessible applications.

A. Advancing Inclusive Software Development

One of the primary research goals is to advance the field of
inclusive software development, specifically focusing on im-
proving accessibility in software design and implementation.
The research will entail creating and enhancing software devel-
opment tools to empower developers to build applications with
accessibility features since the early stages of development.
We aim to investigate novel gesture recognition techniques,
UI element modifications, and provision of accessible datasets
to support developers in catering to diverse user needs. Fur-
thermore, we seek to automate methods for enhancing user

1



35x20

Touch-Target1

Expanding Sections2 Persisting Elements3

Icon Distance

Icon Visual 
Bounds

4

App Database

MotorEase
Process PNG, XML

Detectors

Edge 

Detection

UIED

Cancel

FRCNN

Icon Detection

Cancel

GloVe 
Embedding

Predetermined
Embeddings

Similarity

XML 1

XML2

Checking Icon Locations

Icon ID

Testing Tool
By-product

Accessibility 
Report

- Filename and Violations 
per detectors 
- Organized list of violations
Versus non violations

OK

Cancel

Edge Detection

Compare Icon 
Visual Distances

Extract Bounds for
All icons

OK

Cancel

Fig. 1. Overview of MOTOREASE’s Workflow

interfaces with accessibility features and labels to facilitate
better user experiences for individuals with disabilities.

B. Automated Accessibility Testing and UI Understanding

Another crucial research goal is to develop automated tools
for accessibility testing and comprehensive understanding of
user interfaces. Automating accessibility-focused application
testing will be instrumental in promptly identifying violations
of accessibility guidelines in software. Our research efforts
will focus on creating innovative testing frameworks that can
assess accessibility measures and features, particularly for
Android and iOS applications. Additionally, we aim to explore
automated visual understanding of user interfaces, especially
those found in smartphone applications, to develop algorithms
that can label elements and propose design changes to ac-
commodate the needs of individuals with various accessibility
requirements.

By improving accessibility in design and implementation,
we strive to make technology more usable for individuals with
disabilities. Through innovative software development tools
and automated testing frameworks, we aim to streamline the
creation of accessible applications. Our research on automated
visual understanding of user interfaces seeks to create smarter,
more intuitive software for diverse accessibility needs. These
contributions represent steps towards a more inclusive techno-
logical landscape. One current project that reflects these goals
is presented in Section 3.

III. THE MOTOREASE APPROACH

In this section, we present MOTOREASE, an implemented
and tested automated tool to detect motor-impairment acces-
sibility issues in mobile apps. MOTOREASE is an automated
approach that aims to detect motor-impairment accessibility
guideline violations by analyzing UI metadata and screenshots
collected via AIG tools. MotorEase operates in three stages,
and implements four guideline violation detectors, as depicted
in Figure 1. First, an AIG tool is run on a target application
to produce a set of screenshot and uiautomator XML files
(i.e., UI metadata) before and after each AIG tool action. We
tailor our approach to utilize UI metadata generated using the
uiautomator framework, which captures UI layout informa-
tion in a structured XML format, as this is most prevalent uility
used by recent Android AIG tools [12, 14, 15, 19, 20, 31]. Sec-
ond, MOTOREASE utilizes a series of four violation detectors
to analyze the screenshots and UI metadata to determine if
the target application failed to follow motor-impairment guide-
lines. Finally, MOTOREASE collects the information from the

TABLE I
OVERALL RESULTS FOR EACH DETECTOR

Metrics Touch-Target Exp. Section Pers. Elements Icon Dist
Precision 1.0000 0.9042 0.8214 0.7119
F1-Score 0.7986 0.9129 0.8846 0.8317
Accuracy 0.8525 0.9123 0.8776 0.9575
Sensitivity 0.6648 0.9205 0.9583 1.0000

Recall 1.0000 0.9042 0.8000 0 9525

detectors and compiles an accessibility report that informs
developers of accessibility guideline violations.

Developers are in need of a tool which will address the
four accessibility issues detected by MOTOREASE. The goal
is to provide developers with a reliable tool to facilitate the
development of accessible applications. To achieve our study
goals, we formulated the following five research questions to
evaluate our approach:

• RQ1 How accurate is the Expanding Section detector?
• RQ2 How accurate is the Visual Touch Target detector?
• RQ3 How accurate is the Persisting Element detector?
• RQ4 How accurate is the UI Element Distance detector?
• RQ5 Does MOTOREASE identify a limited number of

false positive and negative violations?

The first four research questions (RQ1 - RQ4) focus on
evaluating the detection quality of each of MOTOREASE’s
detectors. It is important for each detector to be accurate
and provide the developer with accurate accessibility violation
predictions. To achieve this, we use the evaluation metrics
of accuracy, precision, sensitivity, and recall. This evaluation
presents results from Table I, showing accuracy, precision,
sensitivity, and recall of the detectors for true positive (TP)
and true negative (TN) values. The final research question RQ5

focus on evaluating the tool’s ability to accurately predict vio-
lations. The importance of TP and TN values can be crucial to
developers to properly identify accessibility violations within
their applications.

A. RQ1: Expanding Section Detector Accuracy

The expanding section detector performed well across
nearly all of our studied metrics, as indicated in Table I. With
a precision of 0.9042, F1-Score of 0.9129, and an accuracy
of 0.9123, this detector shows promising results that it is
capable of identifying a section’s “collapsibility” accurately.
This indicates that, by using MOTOREASE, developers will
have an increased chance of identifying sections that were
designed without a method of closure, and hence may impeded
use by motor-impaired users. However, this detector does
struggle to detect certain instances in the MOTORCHECK
benchmark.

B. RQ2: Visual Touch Target Detector Accuracy

The touch-target detector showcased strong performance,
as depicted in Table I. With impeccable precision, an F1-
Score of 0.7986, and an accuracy of 0.8525, the detector
demonstrates promising capabilities in effectively recogniz-
ing and categorizing screens with touch target issues. These
outcomes underscore its proficiency. The detector effectively
equips developers with valuable insights into diminutive icons

2



1 Expanding Section Closure
Confusion Matrix

2 Visual Touch-Target Size
Confusion Matrix

3 Persisting Element Location
Confusion Matrix

4 Adjacent Visual Icon Distance
Confusion Matrix

Fig. 2. Detector Confusion Matrices

that might inconvenience users with tremors and imprecise
touches.

Nonetheless, although this detector predominantly delivers
accurate results, it does exhibit certain limitations in its detec-
tion scope. Notably, it fails to identify specific types of viola-
tions. For instance, it is unable to spot icons on the screen that
lack the ”clickable” label in the XML code. In cases involving
dynamically generated screenshots, comprehensive metadata
for each screen element might not be consistently available.
This lack of information adversely affects the detector’s capac-
ity to extract interactive elements on a screen. The inability to
identify clickable elements stands as a central reason behind
inaccuracies or instances of overlooked violations.

C. RQ3: Persisting Element Detector Accuracy

The outcomes of this detector are showcased in Table I.
With a precision of 0.8214, an F1-Score of 0.8846, and
an accuracy rating of 0.8786, this detector shows promising
potential. Furthermore, the detector’s recall rate of 0.9583
indicates its proficiency in accurately identifying true positives.
However, it’s important to note that this detector heavily
depends on the XML structure to pinpoint screen elements,
potentially resulting in instances of mis-classification

D. RQ4: Visual Icon Distance Detector Accuracy

The findings of this detector are shown in Table I. With a
precision of 0.7119, an F1-Score of 0.8317, and an accuracy
level of 0.9575, this detector’s performance stands out. With
a flawless recall rate, it becomes evident that developers
are equipped with a dependable tool capable of precisely
identifying closely positioned icons. This capability prompts
potential adjustments in UI design and icon placement, en-
hancing overall user experience.

Similar to the Visual Touch-Target Violation detector, this
particular detector heavily relies on the metadata provided
by uiautomator to identify clickable components, along
with the accuracy of the UIED element bound detector. The
latter contributes to certain instances of inaccurately reported
violations, primarily attributed to inaccuracies in overlapping
boundary specifications.

E. RQ5: False Positives and Negatives

The confusion matrices for the detectors are shown in
Figure 2, where green boxes illustrate predictions that matched

the ground truth, and red boxes illustrate predictions that did
not match the ground-truth. These figures provide a visual
representation of false positive and negative rates. Figure 2- 1
illustrates that the visual touch target detector never produced
a false-positive outcome. This is due to the nature of the
detector. The detector specifically extracts elements labeled
as clickable in the XML, therefore once they are extracted
and have their edges analyzed, the detector is able to de-
tect violations with certainty. The confusion matrix for the
expanding section detector is shown in Figure 2- 3 , there were
23 false positive predictions, mainly due to limitations related
to lexical pattern matching. Finally, MOTOREASE’s persisting
element detector identified only 8 false positives, mainly due
to inconsistencies in matching elements across screens due to
unexpected changes in uiautomator XML files. In evaluating
the effectiveness of MOTOREASE, we also considered the
impact of false negative predictions, as they signal violations
that are not flagged by MotorEase, and hence could reach end-
users.

In summary, MotorEase exhibits effective detection of
motor-impairment accessibility guideline violations, particu-
larly in popular open-source Android applications. The results
show promise for enhancing accessibility testing in app de-
velopment, and the tool’s accuracy and applicability make it
a valuable addition to the field of accessibility evaluation for
Android apps.

IV. FUTURE WORK

In this paper we presented MOTOREASE, an approach for
detecting, classifying, reporting motor-impairment accessibil-
ity violations. We measured the performance, generalizability,
and applicability of MOTOREASE to various open source ap-
plications. Our results indicate that MOTOREASE is effective
in practice and offers a novel approach for developers to
identify accessibility issues affecting motor-impaired users.

MOTOREASE exemplifies the culmination of our research
goals, aimed at empowering developers in their pursuit of soft-
ware accessibility. By equipping developers with the efficient
means to detect motor-impairment accessibility issues within
their applications, MotorEase marks a step forward in creating
a more inclusive and accessible digital landscape.

Building on the success of MotorEase, our future projects
envision the creation of a search engine tailored to the needs
of developers. This novel tool will enable developers to input
prototype screens, allowing them to find analogous, more
accessible design alternatives. Moreover, the search engine
will analyze the provided screens, thereby identifying potential
accessibility concerns that warrant attention and resolution.
This approach empowers developers to proactively address ac-
cessibility considerations, even before commencing the coding
phase. This approach is currently in development and will be
tested in the near future.

Our overarching vision revolves around promoting acces-
sibility inclusivity throughout the software development life-
cycle. By providing developers with the necessary tools and
resources, we strive to usher in a new era of software design

3



and development that embraces accessibility as a core tenet,
ensuring that software products are accessible to users of
diverse abilities and backgrounds. Through sustained research

efforts and diligent technological advancements, we aim to
contribute significantly to the realization of an accessible and
inclusive digital realm for all.

4



REFERENCES

[1] World report on disability http://www.who.int/disabilities/world report/
2011/en/, 2011.

[2] Adalaws https://www.ada.gov/cguide.htm, 2019.
[3] https://www.section508.gov/blog/universal-design-what-is-it/, Universal

Design Definition and Guidelines.
[4] A. Aizpurua, M. Arrue, S. Harper, and M. Vigo. Are users the gold

standard for accessibility evaluation? In Proceedings of the 11th Web
for All Conference, W4A ’14, New York, NY, USA, 2014. Association
for Computing Machinery.

[5] L. D. A. Almeida and M. C. C. Baranauskas. Universal design
principles combined with web accessibility guidelines: A case study.
In Proceedings of the IX Symposium on Human Factors in Computing
Systems, IHC ’10, page 169–178, Porto Alegre, BRA, 2010. Brazilian
Computer Society.

[6] M. Bajammal and A. Mesbah. Semantic web accessibility testing via
hierarchical visual analysis. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pages 1610–1621, 2021.

[7] M. Bajammal and A. Mesbah. Semantic web accessibility testing via
hierarchical visual analysis. In Proceedings of the 43rd International
Conference on Software Engineering, ICSE ’21, page 1610–1621. IEEE
Press, 2021.

[8] G. Brajnik, C. Pighin, and S. Fabbro. Model-based automated accessibil-
ity testing. In Proceedings of the 17th International ACM SIGACCESS
Conference on Computers and Accessibility, ASSETS ’15. Association
for Computing Machinery, 2015.

[9] H. N. da Silva, A. T. Endo, M. M. Eler, S. R. Vergilio, and V. H. S.
Durelli. On the relation between code elements and accessibility issues
in android apps. In Proceedings of the 5th Brazilian Symposium on
Systematic and Automated Software Testing, SAST 20, page 40–49, New
York, NY, USA, 2020. Association for Computing Machinery.

[10] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser. Automated accessibility
testing of mobile apps. In 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST), pages 116–126,
2018.

[11] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld. Automatically generating
user interfaces adapted to users’ motor and vision capabilities. In
Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology, UIST ’07, page 231–240, New York, NY,
USA, 2007. Association for Computing Machinery.

[12] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su. Practical gui testing of android applications via model abstraction
and refinement. In Proceedings of the 41st International Conference on
Software Engineering, ICSE ’19, page 269–280. IEEE Press, 2019.

[13] J. Li, Z. Yan, E. H. Jarjue, A. Shetty, and H. Peng. Tangiblegrid: Tangible
web layout design for blind users. In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology, UIST ’22,
New York, NY, USA, 2022. Association for Computing Machinery.

[14] Y. Li, Z. Yang, Y. Guo, and X. Chen. Droidbot: a lightweight ui-guided
test input generator for android. In ICSE-C. IEEE, 2017.

[15] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated
testing for android applications. In ISSTA. ACM, 2016.

[16] D. A. Mateus, C. A. Silva, M. M. Eler, and A. P. Freire. Accessibility
of mobile applications: Evaluation by users with visual impairment and
by automated tools. In Proceedings of the 19th Brazilian Symposium on
Human Factors in Computing Systems, IHC ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[17] T. B. McHugh and C. Barth. Assistive technology design as a computer
science learning experience. In Proceedings of the 22nd International
ACM SIGACCESS Conference on Computers and Accessibility, ASSETS
’20, New York, NY, USA, 2020. Association for Computing Machinery.

[18] K. Montague, H. Nicolau, and V. L. Hanson. Motor-impaired touch-
screen interactions in the wild. In Proceedings of the 16th International
ACM SIGACCESS Conference on Computers ; Accessibility, ASSETS
’14, page 123–130, New York, NY, USA, 2014. Association for Com-
puting Machinery.

[19] K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome, and
D. Poshyvanyk. Crashscope: A practical tool for automated testing of
android applications. 2018.

[20] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk. Automatically discovering, reporting and reproducing
android application crashes. In 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST), pages 33–44, 2016.

[21] K. Norman, Y. Arber, and R. Kuber. How accessible is the process of
web interface design? In Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and Accessibility, ASSETS ’13,
New York, NY, USA, 2013. Association for Computing Machinery.

[22] U. Oh, S. K. Kane, and L. Findlater. Follow that sound: Using
sonification and corrective verbal feedback to teach touchscreen gestures.
In Proceedings of the 15th International ACM SIGACCESS Conference
on Computers and Accessibility, ASSETS ’13, New York, NY, USA,
2013. Association for Computing Machinery.

[23] K. Park, T. Goh, and H.-J. So. Toward accessible mobile application
design: Developing mobile application accessibility guidelines for peo-
ple with visual impairment. In Proceedings of HCI Korea, HCIK ’15,
page 31–38, Seoul, KOR, 2014. Hanbit Media, Inc.

[24] Y.-H. Peng, M.-T. Lin, Y. Chen, T. Chen, P. S. Ku, P. Taele, C. G. Lim,
and M. Y. Chen. Personaltouch: Improving touchscreen usability by per-
sonalizing accessibility settings based on individual user’s touchscreen
interaction. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19, page 1–11, New York, NY,
USA, 2019. Association for Computing Machinery.

[25] N. P. K. Ramachandra and C. Csallner. Testing web-based applica-
tions with the ¡u¿v¡/u¿oice ¡u¿c¡/u¿ontrolled ¡u¿a¡/u¿ccessibility and
¡u¿t¡/u¿esting tool (vcat). In Proceedings of the 40th International Con-
ference on Software Engineering: Companion Proceeedings, ICSE ’18,
page 208–209, New York, NY, USA, 2018. Association for Computing
Machinery.

[26] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Branham,
and S. Malek. Latte: Use-case and assistive-service driven automated
accessibility testing framework for android. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, CHI ’21,
New York, NY, USA, 2021. Association for Computing Machinery.

[27] N. Salehnamadi, F. Mehralian, and S. Malek. Groundhog: An automated
accessibility crawler for mobile apps. In 37th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2022), 2022.

[28] M. T. Santiago and A. B. Marques. Are user reviews useful for
identifying accessibility issues that autistic users face? an exploratory
study. In Proceedings of the 21st Brazilian Symposium on Human
Factors in Computing Systems, IHC ’22, New York, NY, USA, 2022.
Association for Computing Machinery.

[29] Z. Sarsenbayeva, N. van Berkel, E. Velloso, J. Goncalves, and
V. Kostakos. Methodological standards in accessibility research on motor
impairments: A survey. ACM Comput. Surv., may 2022. Just Accepted.

[30] G. M. S. Silva, R. M. de C. Andrade, and T. de Gois R. Darin.
Design and evaluation of mobile applications for people with visual
impairments: A compilation of usable accessibility guidelines. In
Proceedings of the 18th Brazilian Symposium on Human Factors in
Computing Systems, IHC ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[31] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su. Guided, stochastic model-based gui testing of android apps. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, page 245–256, New York, NY, USA,
2017. Association for Computing Machinery.

[32] C. Vendome, D. Solano, S. Liñán, and M. Linares-Vásquez. Can
everyone use my app? an empirical study on accessibility in android
apps. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 41–52, 2019.

[33] S. Yan and P. G. Ramachandran. The current status of accessibility in
mobile apps. ACM Trans. Access. Comput., 12(1), feb 2019.

[34] X. Zhang, L. de Greef, A. Swearngin, S. White, K. Murray, L. Yu,
Q. Shan, J. Nichols, J. Wu, C. Fleizach, A. Everitt, and J. P. Bigham.
Screen recognition: Creating accessibility metadata for mobile appli-
cations from pixels. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, CHI ’21, New York, NY, USA,
2021. Association for Computing Machinery.

5

http://www.who.int/disabilities/world_report/2011/en/
http://www.who.int/disabilities/world_report/2011/en/
https://www.ada.gov/cguide.htm

	Introduction
	Research Goals
	Advancing Inclusive Software Development
	Automated Accessibility Testing and UI Understanding

	The MotorEase Approach
	RQ1: Expanding Section Detector Accuracy
	RQ2: Visual Touch Target Detector Accuracy
	RQ3: Persisting Element Detector Accuracy
	RQ4: Visual Icon Distance Detector Accuracy
	RQ5: False Positives and Negatives

	Future Work
	References

