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Abstract
Many software development teams use differential testing as a
quality gate in their release process. Differential testing—namely,
comparing behavioral differences between a system in production
and a system in test—is a laborious process to label changes as
regressions, expected changes, or incidental changes (e.g. those
due to nondeterminism or timing). This manual process involves
inspecting large textual artifacts, like logs, pull requests, and team
discussions, which suggests that Large Language Models (LLMs)
could be helpful. In this paper, we engage with the team developing
a central Azure service to understand their work practice for dif-
ferential testing. We used a design probe method to elicit feedback
about several ways to use LLMs to improve their work practice,
including automatically labeling behavior differences and providing
summaries of various artifacts and discussions. Release engineers
on the team report that predicting a difference’s label would save
them effort, but they want an explicit rationale to improve their
trust in the prediction; they found the generated summaries to be
informative, if a bit wordy.
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• Software and its engineering→ Software testing and debug-
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1 Introduction
The increasing complexity of software development and release pro-
cesses has highlighted a challenge for large organizations: maintain-
ing high software quality while improving developer productivity
and workflows [4, 6, 7]. In fast-paced environments at companies
such as Microsoft, where millions of users rely on seamless and reli-
able updates, software engineers often face overwhelming demands
during the release phase. For engineers tasked with ensuring the
reliability of new builds, traditional workflows can become a sig-
nificant bottleneck, imposing cognitive burdens and inefficiencies
that hinder productivity.

Developer productivity is not merely a technical concern but
a business imperative[13, 26, 27]. In an industry where time-to-
market and software reliability are imperative, inefficiencies in
software engineer workflows directly impact operational costs,
product quality, and customer satisfaction [6, 24, 31]. Tools that
enable engineers to work more effectively can save organizations
millions of dollars annually, reduce time-to-market for new features,
and ensure smoother software rollouts [22]. Improving productivity
in the release engineering phase of the software engineering life
cycle, therefore, aligns with broader business objectives, enhancing
organizational competitiveness in the software market.

Release engineering [2], a cornerstone of the software engineer-
ing lifecycle, often involves techniques like differential testing [11],
where the behaviors of test and production builds are compared
on identical data input to uncover potential regressions or incon-
sistencies [12, 19, 33]. While effective at identifying issues, these
methods rely heavily on manual workflows, requiring engineers to
investigate extensive logs and differential information [3, 16, 17].
In particular, software engineers need to distinguish regressions
from expected behavior differences due to feature enhancements
and bug fixes. This process is complicated by the presence of in-
consequential differences ("noise") caused by asynchrony, timing
differences, non-determinism, etc. Deciding whether a behavioral
difference is expected, a regression or noise may require inspecting
team artifacts beyond the logs themselves, like recent code changes,
bug databases, and team communication channels. To ensure re-
lease quality, this process of categorizing differences is repeated for
each new build.

The overall workflow involves the inspection of many textual
artifacts, which suggests that Large Language Models (LLMs) could
be helpful in providing support and automation for aspects of this
work. Historically, release engineering tools have been designed to
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provide data and rely on engineers for interpretation, prioritization,
and action [8, 10]. While this model sufficed in simpler develop-
ment environments, modern software systems demand tools that do
more than just display information. Intelligent ML and AI tools can
automate, generate, and analyze complex information to provide
advanced insights, enabling software engineers to identify critical
issues and opportunities more effectively [3, 8, 26]. Proactive AI rep-
resents the next stage in this evolution, offering tools that not only
identify patterns and automate analysis but also provide actionable
insights and recommendations tailored to specific workflows, both
making the process easier for experienced engineers and limiting
the learning curve [29].

To explore the potential of LLMs to improve the work practice
of differential testing, we engaged with the team responsible for
a critical service within Microsoft Azure. This team conducts dif-
ferential testing as a routine part of their release process and have
substantially invested in making this workflow productive. They
established a work regimen in which roughly 30 members of the
team take shifts to categorize behavioral differences, during which
they are called on-call engineers (OCEs); the OCEs are spread
across geo-locations to keep the work going around the clock. The
OCEs use a tool (DiffViewer) specifically designed to allow them
to browse, inspect, and categorize behavior differences in detail
(Figure 1 Left Side). Even with this level of investment, the team
finds differential testing laborious, consuming resources that might
otherwise go toward other engineering efforts.

To address these limitations, we propose enhancements for the
DiffViewer tool, in an attempt to enhance release engineering work-
flows with AI, showcasing a novel application of existing methods
such as Large Language Models (LLMs) and clustering to push for-
ward differential testing and elevate the effectiveness of developer
tools in this space. To the best of our knowledge, this is the first piece
of work where LLMs and AI automation techniques were used in
differential testing tooling for software engineers. By integrating AI
capabilities, such as LLM-based diff label prediction and automated
summarization, alongside thoughtful user interface enhancements,
we can transform how software engineers interact with release
engineering tools like the DiffViewer, further providing a more
intelligent way of streamlining their workflow. The redesigned Diff-
Viewer introduces features like machine learning-based clustering,
prioritization mechanisms, and a block-based layout with progress
tracking—enabling software engineers to focus on critical tasks
while automating repetitive ones. This shift from manual to proac-
tive workflows not only reduces cognitive load but also enhances
the development experience, empowering software engineers to de-
liver high-quality software with greater efficiency and satisfaction.
This work makes the following contributions to address previous
challenges:

• We leverage Large Language Models (LLMs) to automate
differential testing processes, generate contextualized sum-
maries, and provide actionable insights.

• We incorporate machine learning-based clustering and pri-
oritization mechanisms to enable OCEs to focus on related
and important issues while serving as an organizational tool.

• We prototype the evolution of a prior tool from a manual
workflow tool to a more guided approach, offering a user-
centric enhancement to release engineering tooling while
providing valuable insights.

2 Approach
This paper provides a series of enhancements to the original Diff-
Viewer tool used internally at Microsoft.

2.1 Original DiffViewer
The raw differences between the metadata of the released and
candidate builds can be quite large and include many redundant
occurrences of the same difference due to loops, repeated invoca-
tions, and other iterative behavior. To remove these redundancies,
the DiffViewer bins individual log differences by their program lo-
cations, keeping a count of occurrences for each. The team uses the
term diff to refer to a binned log difference with a count. The Diff-
Viewer tool shows all diffs organized as rows in a table, sorted from
highest to lowest count. The left side of Figure 1 depicts the original
DiffViewer, where rows of diffs are displayed with basic features
such as counts, owners, categories, and a comment section. The
right side of Figure 1 shows the updated version, which enhances
the process with a more visually organized interface, AI-generated
summaries, and streamlined tools for categorization and ownership
assignment. In a typical on-call session, an OCE works through the
Diffs from top to bottom with the goal of categorizing the Diff (as
regression, expected behavior, or noise) and assigning an engineer
to be responsible for that Diff (the "owner"). Each Diff also has a
comment section where team members can add information, such
as justifications for suggested categories.

2.2 Redesign Through Developer Insights
Given the nature of the DiffViewer, gathering developer insights
was crucial to understand its current usage and identify potential
improvements. To achieve this, we conducted a series of interviews
with four software engineers across varying levels of experience
with the DiffViewer. This approach ensured that we captured per-
spectives from new, experienced, and senior engineers regarding
the process of labeling diffs within the tool.

We reached out to software engineers based on the number of
Diffs they had labeled, ensuring a balanced representation of ex-
perience levels by inviting individuals who had labeled between
100 and 1,000 Diffs, 1,000 and 3,000 Diffs, and more than 3,000
Diffs. This approach provided insights from both novice and experi-
enced software engineers, avoiding bias toward any particular skill
level. The interviews, which included live demonstrations, captured
both qualitative and observational data as participants labeled Diffs
while explaining their thought processes. Emphasis was placed on
understanding their UI interactions, including which columns or
elements were most frequently referenced, to identify the most
valuable components, especially given the redundant processes in
the original DiffViewer.

During the live demonstration sessions, we observed common
behaviors such as examining error codes, referencing categories
and descriptions, and comparing details between test and produc-
tion environments, which helped us understand how engineers
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Figure 1: Comparison of the original diff viewer (left) and the new version (right). The new version introduces a more structured
layout, improved visual indicators, and AI-generated summaries to enhance usability and streamline workflow.

collected and analyzed information to label diffs accurately. We
also observed which parts of the UI participants relied on most,
providing insights into their workflows and decision-making. Ad-
ditionally, we gathered direct feedback on the DiffViewer’s design
and functionality, with many participants suggesting features to
reduce cognitive load and manual effort, such as automation for
information retrieval, predictive tools for error categorization, and
organizational improvements to prioritize critical information.

The interview process revealed how software engineers used the
DiffViewer, highlighting pain points, valuable features, and oppor-
tunities for improvement. By combining insights from both direct
observations and feedback, we gained a comprehensive understand-
ing of how to redesign the DiffViewer to provide a more intuitive,
streamlined experience for developers at all levels. Key areas for
enhancement included improved automation, streamlined work-
flows, and better tools for organizing and prioritizing information.
Based on these findings, we created a prototype embodying ideas
to make the DiffViewer more efficient, intuitive, and developer-
friendly. The goal of the prototype is to elicit feedback from OCEs
and team leaders.

2.3 Design Probe
The OCEs’ work is both critical to the Azure service’s quality and
full of time pressure. Even with its limitations, the existing Diff-
Viewer tool is reliable and familiar to OCEs. To introduce a replace-
ment tool or even to change the existing features requires retraining
the OCEs and taking a risk that the change is more effective. There-
fore, to get feedback while not disturbing the team’s ongoing work,
we chose a design probe methodology [15]. We designed a proto-
type to demonstrate several possible enhancements to the existing
work practice, with the goal of eliciting insights, reflections, and
feedback from OCEs.

The redesigned DiffViewer interface introduces a block-based
layout that prioritizes clarity, ease of access, and efficiency. Due
to the sensitive nature of the information processed by the tool,
certain details have been blurred out or replaced with placeholder
text in the images presented here. However, the interface remains
identical in structure and functionality for real-world users.

The redesigned DiffViewer UI (Figure 1 Right Side) is divided
into distinct, intuitive panels. The top panel 1 displays the build

number and progress bar, allowing users to track their progress
within each session on the latest build. This feature gamifies the
workflow while ensuring developers remain informed about the
overall status of their work. In the left panel 2 , users can efficiently
organize their tasks, with options to filter, group, and sort Diffs
based on various criteria. This panel enables quick navigation to
specific areas of interest, significantly reducing the time required to
locate and address key issues. The central block 3 forms the core of
the UI, presenting the most important and immediate information
to OCEs. Each block contains comprehensive details about a Diff,
including predicted labels, descriptions, and log access, ensuring
that all relevant information is readily accessible within the block.
OCEs can also use this area to flag items for further review or use
the checkmark to confirm the predicted label as their desired label
for the diff. An example of this is shown in the image where the
Green block is a labeled Diff, for New Feature. This labeling is also
reflected in the Progress Bar 1 at the top where 1 of the 15 Diffs
are labeled. On the right side panel 4 , additional insights and sum-
maries generated by the integrated AI are displayed. This feature
provides contextual, AI-driven summaries and patterns extracted
from the logs as well as comment generation and summary, pro-
viding more information about the Diff to the OCEs. By leveraging
machine learning to offer proactive insights, the redesigned Diff-
Viewer minimizes manual effort and enhances decision-making.

Overall, this prototype exemplifies a user-centric approach tai-
lored to the high-stakes context of Microsoft’s security initiatives
within Azure. By blending automation, organization, and intuitive
design, the tool empowers OCEs to work more efficiently and ef-
fectively.

2.4 LLM-Based Diff Label Prediction
A central feature of the redesigned DiffViewer is its capability to
automate diff labeling through the use of Large Language Models
(LLMs). This builds on prior work by Krishna Vajjala et al. [32],
which presented a robust approach for utilizing LLMs to classify
differences between test and production builds. Fine-tuned on his-
torical datasets with thousands of Diffs, the model achieves an over-
all accuracy of 97.38%, with low false-positive and false-negative
rates, ensuring reliable predictions across categories such as User-
MarkedNoise, NewFeature, and Regression. The fine-tuned model
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used a balanced set of data between the three labels, to predict
labels. By integrating this feature into the tool, we address one of
the most time-consuming and cognitively demanding aspects of
the Diff analysis workflow, streamlining the process for OCEs and
enabling them to focus on higher-priority tasks.

The LLM-based Diff labeler is integrated into the redesigned
DiffViewer’s UI, where predictions are displayed alongside con-
fidence scores and supporting metadata to enhance transparency
and usability. The tool makes it easy for OCEs to confirm predic-
tions with a single click on a checkmark next to the suggested label,
automatically labeling the Diff. This combination of high accuracy,
reliability, and user-friendly design significantly reduces manual
effort and ensures consistent labeling, transforming the diff analysis
workflow into a more efficient and intuitive process.

Within the tool, Diff label prediction integrates with the group-
ing feature in Section 2.7, allowing OCEs to sort and organize Diffs
by predicted labels. This enables quick identification of critical re-
gressions while de-prioritizing noise, streamlining the workflow
and focusing attention on high-impact issues. In the UI, predictions
are displayed with a checkmark next to them, allowing OCEs to
easily confirm a prediction with a single click, automatically label-
ing the diff and further reducing manual effort. This integration
motivates the tool’s philosophy of combining intelligent automa-
tion with user-centric design, significantly reducing cognitive load
during on-call sessions.

By incorporating LLM-basedDiff label prediction into the broader
DiffViewer framework, the tool transforms the Diff analysis work-
flow from a manual process into a proactive and guided experience.

2.5 Automation of Information Analysis and
Summarization

This feature streamlines differential testing by automating the ex-
traction and summarization of log information OCEs use to label
Diffs. During interviews, we observed OCEs following heuristic pat-
terns: identifying the Diff Category label, locating this label in the
differential view, and analyzing log differences to make decisions.
To simplify this, we automated these steps by programmatically
identifying labels in the Diff Category and extracting the key dif-
ferences from the logs. This reduces the need for manual searching
and comparison, significantly lowering developers’ cognitive load
and saving time.

Building on this automation, we enhance the workflow by us-
ing the extracted log differences and category labels as context for
our fine-tuned LLM described in Section 2.4. The LLM generates a
high-context summary of the Diff, providing OCEs with both the
extracted differences and an intelligent summary of key distinc-
tions. This eliminates the need for OCEs to manually interpret the
logs, enabling them to review the summary and make informed
decisions. By combining automation with an explanation of the
predicted label, we enhance explainability and allow OCEs to confi-
dently confirm the labeling of each diff. This approach exemplifies
proactive AI by automating redundant, time-consuming tasks and
empowering developers to focus on higher-level decision-making,
moving beyond traditional chat-based AI usage and creating a more
efficient, developer-friendly workflow.

2.6 Comment Summarization and Generation
This feature streamlines Diff labeling by generating concise sum-
maries of prior comments and creating new ones using a fine-tuned
LLM. OCEs in on-call sessions often reference existing comments
for context, however, reviewing dozens of comments can be time-
consuming. The LLM processes Diff logs and associated comments
to produce summaries, prioritizing recent and relevant insights.
A toggle switch allows developers to view either the raw com-
ments or the summary, depending on their needs. For Diffs without
prior comments, the LLM generates new, context-aware suggestions
based on patterns from historical data, providing more information
for Diffs without comments.

2.7 Clustering Options for Similar Diffs
This section discusses how we introduced a novel application of
the K-means clustering algorithm to organize and work with Diffs
in the context of differential testing. Leveraging insights from our
developer interviews, we designed a system that allows developers
to cluster and sort Diffs dynamically, enabling them to work more
efficiently based on their preferences and priorities. Below, we
outline the clustering methodology, UI design considerations, and
prioritization strategies.

2.7.1 Clustering Methodology. Through our interviews, we iden-
tified two key attributes of diffs that naturally lend themselves to
clustering: Diff Categories and Predicted Labels. By default, Diffs are
grouped into six groups based on the six distinct, pre-existing Diff
Categories. Similarly, Diffs can also be grouped into three groups
based on the three possible predicted labels.

For more granular control, we allow clustering based on the
description of the Diff. In this case, we generate embeddings for the
Diff descriptions using OpenAI embeddings and perform k-means
clustering. OCEs can specify the number of clusters for description-
based clustering, ranging from 3 to 10 clusters, giving them the
flexibility to adapt the organization of their diffs to their needs.

This combination of fixed clusters for categories and labels, along
with dynamic clusters based on description embeddings, provides
a robust and flexible clustering framework. To ensure real-time
performance, we cache the embeddings for the Diff descriptions
within the data of each Diff, enabling quick computations even with
up to 100 Diffs in a session, as observed from our interviews and
testing.

2.7.2 Dynamic UI Design for Clustering. The UI incorporates clear
cluster separators that visually distinguish clusters with a dividing
line. Each cluster separator includes a concise 5-7 word summary
of the cluster, recalculated dynamically whenever a new clustering
request is made. This summary provides OCEs with an overview
of the cluster contents, helping them quickly identify the type of
diffs grouped together.

The UI also allows developers to toggle between grouping or
clustering by categories, labels, or descriptions, giving them control
over how they organize their Diffs. For description-based clustering,
developers can dynamically adjust the number of clusters in real
time, further enhancing flexibility and usability.

2.7.3 Prioritization Within Clusters. To account for the importance
of diffs, we implemented a prioritization mechanism based on the
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"count" value of each Diff, which signifies how frequently a Diff
occurs. Higher counts represent higher priority Diffs. Regardless of
the clustering method chosen, Diffs within each cluster are always
ordered by their counts, ensuring that developers can address the
most critical Diffs first.

The clustering options provide OCEs with the flexibility to or-
ganize Diffs dynamically based on categories, predicted labels, or
description similarity. By combining fixed groups for categories
and labels with dynamic embedding-based clusters for descriptions,
the system balances structure and adaptability. With real-time per-
formance ensured through embedding caching and prioritization
mechanisms, developers can work efficiently and focus on the most
critical tasks.

2.8 Flagging for Organization
This feature introduces a flagging system for prioritizing, following
up, or analyzing Diffs, addressing a major gap in the previous work-
flow. Previously, OCEs lacked an efficient way to revisit specific
diffs, often resorting to manually sifting through lists.

To address this, we implemented a flagging functionality that
allows developers to mark Diffs with one of three colored flags:
Red, Orange, or Yellow. Importantly, these colors do not have pre-
defined meanings, giving OCEs the freedom to use the flags in a
way that aligns with their individual workflows and organizational
preferences. To enhance usability, we also provide a filtering fea-
ture that allows OCEs to view only flagged Diffs, enabling them
to focus exclusively on Diffs they marked as important. The flag
colors remain visible even outside the filtered view, ensuring that
flagged Diffs are easily identifiable when working with the full list
of Diffs. Interviews revealed that revisiting unresolved Diffs was a
key pain point. This flexible system empowers OCEs to customize
their workflow, fostering control and improving organization, mak-
ing the redesigned DiffViewer more intuitive and user-friendly.
.

2.9 Progress Bar
The progress bar is a simple yet essential addition to the redesigned
DiffViewer, providing OCEs with a clear visual representation of
their progress during a labeling session. This feature allows devel-
opers to easily see the total number of Diffs in a session and track
how many have been labeled.

By offering incremental progress updates, the progress bar trans-
forms the labeling process into a more visual and target-driven
experience. This clear progress indication not only helps OCEs
stay organized but also enhances the overall user experience by
fostering a sense of accomplishment and reducing the cognitive
load of managing their workflow.

2.10 Complete/Incomplete Status
This simple yet impactful feature enhances workflow organization
by introducing a clear distinction between labeled and unlabeled
Diffs. The original DiffViewer presented a cluttered view where all
Diffs, regardless of their status, remained visible, often leading to
visual overwhelm. To address this, we implemented an inbox-style
view that focuses exclusively on unlabeled diffs.

With this feature, once a Diff is labeled, it is automatically re-
moved from the view, leaving only the incomplete Diffs. This
streamlined approach reduces visual noise, helps OCEs stay fo-
cused, and ensures a cleaner, more organized workflow.

2.11 Priority-Based Ordering and Reduced
Mouse Travel

The Priority-Based Ordering feature, inspired by the original Diff-
Viewer, allows OCEs to view all of the Diffs in order of priority,
ensuring critical issues are addressed promptly. In typical on-call
sessions, labeling can take 5–6 hours, as OCEs methodically identify
discrepancies between production and test logs. By prioritizing the
most persistent errors early in the session, this feature enhances
the efficiency and impact of the labeling process.

Building on observations from OCE interviews, the Reduced
Mouse Travel feature addresses inefficiencies caused by scattered
information across the screen. A redesigned visual layout consoli-
dates all necessary actions and information within a single block
for each diff. When an OCE selects a Diff block, related informa-
tion—such as category, summary, and descriptions—appears on the
right side of the screen. Additionally, a label button is integrated
directly into the diff block, enabling OCEs to label the Diff without
navigating elsewhere. This centralized design minimizes screen
traversal, significantly improving workflow efficiency and reducing
mouse travel.

2.12 Preserving Core Features
While prototyping several new features, we ensured that the re-
designed DiffViewer retained key elements from the original ver-
sion that OCEs relied upon. Core features such as side-by-side
production and test log comparisons and Diff labeling remain cen-
tral to the tool. These features were essential to the workflow and
heavily utilized by OCEs, making them critical to preserve. For
example, side-by-side log comparisons are now easier to access
within the block-based UI, and labeling Diffs is streamlined with
the addition of label buttons directly on each block. We ensured
that the proactive AI integration and automation features were
designed to seamlessly align with the existing workflow, allow-
ing developers to adopt these enhancements without disrupting
their familiarity with the original tooling. This approach ensures
that the DiffViewer builds upon its strengths while addressing the
pain points identified during developer interviews, providing both
continuity and enhanced usability.

3 Design Probe Study
The prototype embodies a number of potential improvements to
the work practice, with the goal of eliciting feedback from OCEs
about which ideas to prioritize for further investment. Because
the OCEs’ work is both critical and laborious, it would not be
reasonable to ask them to conduct the work using a prototype
during their on-call sessions nor to repeat the work during their
off times. Instead, we use a design probe (also called a technology
probe) method, which combines multiple goals: "the social science
goal of understanding the needs and desires of users in a real-world
setting, the engineering goal of field-testing the technology, and
the design goal of inspiring users and researchers to think about
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new technologies" [15]. In particular, we used the prototype as a
shared artifact during a series of interviews with OCEs, to elicit
feedback about their preferences and priorities.

3.1 Participants
The study had a participation rate of 17%, with 5 out of 30 invited
OCEs electing to participate. All participants were experienced
with the Diff labeling workflow, ensuring relevant and practical
feedback was obtained. OCEs work in shifts across two teams, one
in Ireland and one in Redmond, Washington, USA. Four of the
participants were from the Redmond team and one from the Ireland
team. We conducted the study during the OCEs off-call times, in
deference to their critical role. Sessions were 30–45 minutes, for
which participants were compensated $200 USD. All participants
signed a consent form to allow transcripts of their sessions to be
used for this study.

3.2 Interview Process
The evaluation of the redesigned DiffViewer involved a demonstra-
tive interview process to gather qualitative feedback from partici-
pants. The purpose of these interviews was to assess the usability
and effectiveness of the new features while ensuring that authentic
feedback drove the analysis and future improvements.

Each session followed a structured yet flexible protocol to guide
discussions and encourage open-ended feedback. Sessions began
with an introduction to the prototype, clarifying that it was not
intended to replace the existing tool but to showcase new features
designed to enhance the diff labeling process.

Participants were guided through the prototype’s core layout
and workflow, which included four main areas: a central tile-based
view displaying all Diffs, a progress bar tracking completion, a
control panel for managing displayed information, and a detail
panel providing comprehensive insights into selected diffs. Demon-
strations highlighted key features such as clustering by similarity,
flagging, AI-based label predictions, and AI-generated summaries
of logs and comments. For each feature, participants were asked
targeted questions about its functionality, usefulness, and align-
ment with their workflow. These questions aimed to assess the
improvements from the participants’ perspective, identify features
that resonated with their needs, and determine their preferences.
As the prototype showcased potential features, the goal was to
understand which elements participants envisioned incorporating
into their daily tasks.

The demonstrative nature of the process allowed participants to
engage with the prototype in a guided manner. By visually show-
casing features and prompting discussions, the study encouraged
participants to share their likes, dislikes, and suggestions for im-
provement. This approach ensured that feedback was focused yet
open-ended, providing valuable insights into both the strengths
and limitations of the redesigned DiffViewer.

The interview process concluded with a short questionnaire,
where participants rated the features and provided additional feed-
back. This combination of guided demonstrations and structured
surveys offered a comprehensive understanding of the tool’s impact
and areas for refinement.

3.3 Protocol Overview
The study protocol was designed to comprehensively evaluate the
redesigned DiffViewer tool while fostering an open environment
for candid and constructive feedback. The primary goal was to
assess the usability, functionality, and impact of the new features in
the redesigned DiffViewer on the workflow of OCEs. The protocol
balanced standardized data collection with adaptability to capture
participants’ unique insights and experiences.

Each session began with a brief introduction to the research
objectives, highlighting the experimental nature of the prototype
and its role in exploring innovations for diff analysis. Participants
were assured that the tool was not intended to replace their current
systems but to gather feedback on potential features. The intro-
duction also outlined the session structure and clarified that the
prototype was solely for demonstration purposes, with no impact
on their existing workflows or databases.

Following the introduction, participants were guided through
the core features of the prototyped DiffViewer tool, with an em-
phasis on its primary functionalities. They learned to select spe-
cific builds and navigate the interface efficiently using a preloaded
build, enabling a focused exploration of the tool’s features. Ma-
chine learning-based clustering was highlighted as a means of
grouping similar Diffs, streamlining labeling tasks, and reducing
cognitive load, with participants providing feedback on this ap-
proach compared to traditional sorting methods. Flexible viewing
modes, such as sorting by count, category, or incompleteness, were
demonstrated alongside dynamic filtering and pivoting capabilities.
AI-powered features, including label predictions and concise Diff
summaries, were introduced to save time and reduce manual effort,
and participants evaluated their accuracy and utility. Interactivity
was encouraged, allowing participants to experiment with the tool
and provide feedback on its design and functionality.

Throughout the session, participants shared their impressions
of the tool and its integration into their workflows. Discussions
focused on clustering, AI predictions, and user interface design,
providing insights into the tool’s strengths and potential areas for
improvement.

The study concluded with a questionnaire to collect quantitative
ratings and qualitative feedback on the DiffViewer’s features. Par-
ticipants were asked to rate their overall satisfaction, comment on
the tool’s potential integration into their workflows, and suggest
any additional functionalities they deemed necessary. This final
step ensured that the study captured a holistic perspective on the
tool’s capabilities and future development opportunities.

The protocol combined structured demonstrations, interactive
exploration, and open-ended discussions for a thorough evaluation,
ensuring authentic, actionable insights reflective of participants’
real-world experiences.

3.4 Survey
The survey was conducted immediately following the DiffViewer
tool demonstration to collect feedback on OCEs’ experiences, im-
pressions, and potential areas for improvement. It featured both
quantitative and qualitative questions, focusing on usability, func-
tionality, and the tool’s impact on workflows. Quantitative data
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offered valuable insights for evaluating the tool’s effectiveness and
identifying priorities for further development.

Survey questions were designed to address specific objectives.
OCEs were asked about the ease of navigation and intuitiveness of
the interface to assess whether the design met user expectations.
Questions on functionality examined the relevance and accuracy
of the tool’s features, providing insights into how well it supports
essential tasks. Feedback on workflow impact explored how the tool
influenced productivity and task efficiency. Open-ended questions
invited participants to identify shortcomings or suggest additional
features for enhancement. Overall satisfaction was measured using
a Likert scale, offering a standardized metric for evaluation.

Table 1: Challenges and Features Evaluated in the DiffViewer
Study

Survey Category Details

Biggest Challenges: Ranked
from most challenging to least
challenging

Difficulty finding a specific diff.
Finding a previously worked-on diff.
Jumping between screens (e.g., logs, code) when
diagnosing a diff.
Assigning a diff to the right owner.
Re-establishing context when moving between
diffs.
Writing summaries when assigning diffs to owners.
Time required to manually label predictable diffs.
Estimating work progress (remaining or com-
pleted).
Other unspecified challenges.

Feature Evaluation: 5 point
Likert scale from Not-Likely to
Very-Likely to use a feature

Label predictions for review.
Progress bar.
AI summaries in the detail panel.
Flagging diffs.
Alternative views (e.g., by count, cluster).
Clustering diffs.
Tile layout for diffs.
Detail panel on the right.

In designing the questionnaire, we used two complementary
approaches—ranking and a 5-point Likert scale—to gather insights
about OCEs’ workflows and the DiffViewer tool (Table 1). The
"Biggest Challenges" section asked participants to rank challenges
frommost to least impactful, prioritizing areas where OCEs face the
most friction. This approach forces participants to identify critical
obstacles, such as whether locating specific diffs or re-establishing
context poses a greater challenge, providing clear, actionable prior-
ities for improvement.

The "Feature Evaluation" section employed a 5-point Likert scale
to assess the perceived usefulness and likelihood of adoption of
specific redesigned DiffViewer features. This method allowed us
to capture detailed feedback on various features, from label pre-
dictions to clustering and alternative views, revealing the features
participants are most likely to use and those requiring refinement.
To encourage participation while collecting actionable feedback,

the questionnaire was kept concise. By balancing quantitative rank-
ings with qualitative Likert-scale assessments, the study ensured a
holistic understanding of the tool’s impact on OCE workflows.

3.5 Artifacts Collected
The evaluation process generated two primary types of artifacts,
both of which provide valuable insights into the usability and func-
tionality of the DiffViewer tool:

3.5.1 Transcripts: Transcripts from interview sessions captured
detailed interactions and participant feedback on the tool. They
provide qualitative data on features, workflow impact, and sugges-
tions for improvement, along with spontaneous comments that
reveal participant impressions and help identify recurring themes
or unique insights.

3.5.2 Survey Responses: Post-session surveys collected structured
feedback, including feature preferences, usability impressions, and
prioritized functionalities. These responses combine quantitative
ratings (e.g., Likert scale scores) with qualitative insights from open-
ended questions, enabling a balanced analysis of the tool’s strengths,
weaknesses, and areas for improvement.

By combining these two types of artifacts, the evaluation ensures
a comprehensive understanding of participant feedback. The tran-
scripts offer depth and context through rich qualitative insights,
while the survey responses provide structured data to support quan-
titative analysis. These artifacts collectively serve as the foundation
for evaluating the DiffViewer tool’s impact and guiding its iterative
refinement.

4 Results
4.1 Ranking of Challenges
As part of our evaluation, we conducted a structured survey to
better understand the challenges OCEs face in the Diff analysis
workflow. This survey provided participants the opportunity to
rank and prioritize the difficulties they encounter, offering a clear
view of the most significant pain points in the process. The ranking
information across the participants can be seen in Figure 2.

The results of our structured survey highlight significant chal-
lenges OCEs face during on-call workflows, with the most fre-
quently cited issues being the difficulty of jumping between screens,
finding specific Diffs or those previously worked on, and manually
labeling predictable diffs. These challenges reflect the fragmented
and time-consuming nature of the original DiffViewer workflow,
requiring OCEs to expend significant effort navigating multiple
screens, interpreting logs, and revisiting prior work.

To address these issues, the redesigned DiffViewer introduces
key improvements that significantly enhance the Diff analysis pro-
cess. A consolidated block-based UI, combinedwith various filtering
and display options, eliminates the need to jump between screens
by presenting all relevant information in a single, intuitive layout.
The integration of LLM-powered predictive Diff labeling further
reduces the burden of manually labeling predictable Diffs, while
intelligent clustering and flagging features streamline the organiza-
tion and revisiting of specific Diffs. Additionally, the tool automates
aspects of information extraction and summarization, addressing
investigative challenges by providing actionable insights directly
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Figure 2: Ranked Challenges Faced in On-Call Sessions

within the interface. Features such as comment summarization and
clustering also enhance communication and collaboration, enabling
teams to seamlessly share and act on diff-related information.

Beyond addressing major challenges, the redesigned DiffViewer
incorporates improvements targeting less critical yet impactful as-
pects of the workflow. For example, the introduction of a progress
bar and an inbox-style view for incomplete Diffs enhances organi-
zation and gives OCEs a clear sense of progress during labeling ses-
sions. Features like priority-based ordering, reduced mouse travel,
and streamlined UI layouts tackle usability concerns, minimizing
frustration during repetitive tasks.

By addressing both critical and secondary challenges, the re-
designed DiffViewer delivers a smoother, more intuitive user ex-
perience that supports OCEs at every stage of the Diff analysis
process, ultimately improving efficiency and reducing cognitive
load.

Participants who reported "other" as a challenge mentioned the
complexity of transferring Diffs, determining whether prior feed-
back could be reused with a new build, the investigative nature of
analyzing code outside the tool, and the lack of efficient mechanisms
for sharing Diff-related information across teams. Though the re-
designed DiffViewer is not equipped with communication portals,
we address the issue of context for Diffs via generative comments
and summaries to aid the OCEs in making their decisions.

These results validate the redesigned DiffViewer and highlight
key challenges OCEs face. By addressing these pain points, the
tool improves efficiency, reduces cognitive load, and demonstrates
strong alignment with real-world needs.

4.2 Feature Evaluation
Participants rated features of the prototype DiffViewer using a 5-
point Likert scale, assessing their usability, relevance, and likelihood
of adoption. The results provide a ranking of features, highlight-
ing which enhancements appealed most to OCEs and why. The
results of the findings can be seen in Figure 3. These findings also
underscore the core motivation of this paper: leveraging AI and
automation to address release engineering-specific tasks. The re-
sults reveal that software engineers want and need more intelligent
tools to streamline workflows in the release engineering phase,
and the features introduced in this study contribute to improved
productivity and efficiency.

The feature allowing for alternative views, such as grouping
and clustering Diffs by count, description, or cluster, emerged as
the most likely to be adopted, receiving overwhelmingly positive
feedback from participants. This reflects OCEs’ strong preference
for flexibility and customization in organizing and viewing Diffs, as
these options enable them to adapt the tool to their specific needs.
By offering multiple ways to cluster and sort Diffs, this feature
directly enhances workflow efficiency and adaptability.

Similarly, the ability to flag Diffs was highly rated by OCEs, who
found it particularly useful for marking critical items for follow-
up or prioritization. The ability to filter flagged diffs and visually
distinguish them in the interface aligns with OCEs’ need for better
task organization during on-call sessions, addressing the challenge
of efficiently revisiting and managing specific Diffs.

The tile-based layout for presenting diffs also received high
praise, with OCEs appreciating the streamlined and consolidated
presentation of information. By reducing the cognitive load associ-
ated with navigating between screens and providing all relevant
details in a single, clear layout, this feature effectively addresses
one of the core challenges identified in the survey and interviews.

The feature of Diff label predictions garnered significant interest
among OCEs, with many acknowledging its potential to reduce
manual effort and streamline the labeling process. However, some
participants raised concerns about accuracy and explainability, em-
phasizing the need for transparency in AI-driven tools, providing
an opportunity to build trust in predictive systems by improving
accuracy and providing clear justifications for predictions, which
would facilitate broader adoption and seamless integration into
workflows.

AI-generated summaries in the detail panel and the repositioned
detail panel on the right also received positive feedback, though
slightly lower than other features. OCEs appreciated the summaries
for their ability to reduce manual effort in interpreting logs and
synthesizing information, while the repositioned detail panel im-
proved the clarity and accessibility of key details. Together, these
features highlight the value of intuitive UI design and intelligent
automation in streamlining the analysis process.

The progress bar, while receiving moderate ratings, was noted
for its utility in tracking task completion during lengthy labeling
sessions. Although it does not address a primary pain point, the
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Figure 3: Survey of Likelihood of OCEs to Adobt New Features

progress bar contributes to a more structured and engaging work-
flow by providing a sense of progress and accomplishment.

In summary, the evaluation highlights a preference for features
that offer flexibility, organization, and streamlined workflows, such
as other views, flagging diffs, and the tile-based layout. These fea-
tures significantly improve the efficiency and adaptability of the diff
analysis process. By addressing both core challenges and secondary
concerns, the redesigned DiffViewer demonstrates the potential of
AI and automation in improving software engineering workflows
and advancing the state of release engineering tools.

4.3 Qualitative Feedback Analysis
Qualitative feedback collected through open-ended survey responses
and interviews provided valuable insights into user preferences,
trust in AI, and areas for improvement. The key themes that emerged
are outlined below:

Usability. Participants praised the intuitive layout of the re-
designed DiffViewer, particularly the grouping feature. Grouping
was noted as a significant improvement over the traditional lin-
ear workflow, reducing cognitive effort and minimizing "bouncing
around" between unrelated tasks. One participant highlighted, "It
would probably decrease the chance of us bouncing around with the
same issue...this is a good, good approach." Another remarked on
the utility of pivoting views, saying, "Having different pivots makes
sense... it’s a newer way to organize the data", demonstrating the
need for flexibility in exploring diffs.

However, there was a recurring suggestion to add additional
filtering options to complement clustering and pivoting. For ex-
ample, a participant requested the ability to filter based on team
ownership: "It would be very useful to filter based on teams or areas
we own...this would help us focus only on what’s relevant."

AI Trust and Reliability. While participants found AI predic-
tions generally useful, many expressed a desire for greater trans-
parency in how predictions were generated. A participant articu-
lated this sentiment clearly: "I need to know what data led to the
prediction...without that, I’d still have to do all the investigation my-
self."

The concept of supporting metadata or rationale was a recurring
request. As one OCE put it, "If it told me the relevant code changes
or logs that led to the label, it would save so much time." That is,
the rationale should not just be the logic behind the prediction,

but a set of links to relevant artifacts to allow an OCE to quickly
double-check or overrule the prediction. Another emphasized the
need to build trust gradually: "As I use the tool more and see that my
results match its predictions, I’ll grow to trust it more."

Feature Suggestions. Several OCEs suggested features, empha-
sizing the value of clustering and predictive labeling. One partici-
pant proposed incorporating common errors into the AI logic, such
as automatically marking known caching issues as low priority for
quick review. Another suggestion was to allow the direct transfer
of diffs between teams within the tool, reducing back-and-forth
communication. Participants also requested a richer display of meta-
data in the detail panel to improve decision-making and workflow
efficiency.

These insights support the motivations and approach of this pa-
per, showing that OCEs seek intelligent tools that enhance produc-
tivity while maintaining transparency and flexibility. The feedback
has directly influenced the features of the DiffViewer, addressing
existing challenges and emerging needs in release engineering.

4.4 Comparison of AI/ML vs Non-AI/ML
Enhancements Based on User Feedback

The redesigned DiffViewer introduced both AI-driven and non-AI-
driven features, with participants providing detailed feedback on
each. This section compares their perceived benefits, limitations,
and overall impact on the workflow.

AI-driven enhancements were praised for their time-saving po-
tential, particularly predictive diff labeling, which automated repet-
itive tasks and allowed OCEs to focus on higher-priority work.
AI-generated summaries also reduced cognitive load by providing
immediate context for logs, with one participant saying, “The AI
summaries are a great starting point—I don’t have to dig through
logs just to understand what’s happening.” The intelligent clustering
feature, which grouped related diffs, was valued for improving pri-
oritization and managing large data volumes. However, concerns
about accuracy and explainability of AI-driven features were fre-
quently mentioned. Transparency was crucial for trust, with one
participant stating, “I trust the predictions more when I understand
how they were made and what data was used.” These concerns high-
light the need for clear justifications behind AI predictions and
outputs.
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In contrast, non-AI enhancements were appreciated for their reli-
ability and simplicity. The consolidated block-based UI streamlined
navigation, while the progress bar and inbox-style views helped
track tasks and organize labeling sessions. Features like flagging
and priority-based ordering improved task management. Overall,
AI-driven features were effective in reducing effort and accelerating
workflows but required trust-building through better explainabil-
ity. Non-AI enhancements were seen as intuitive and immediately
impactful, addressing key usability pain points.

Participants favored hybrid solutions that integrated AI-driven
functionality with usability improvements. For example, the cluster-
ing feature, which combined machine learning for dynamic group-
ing with a user-friendly interface, was seen as a best-of-both-worlds
solution. However, some participants hesitated to rely solely on AI
for critical tasks. Together, each set of features complemented each
other, delivering a balanced solution that met diverse OCE needs
and encouraged broader adoption of AI-driven workflows.

5 Related Works
Differential testing is a key technique in software engineering that
compares outputs from different system versions to detect regres-
sions or inconsistencies [2, 11, 12, 21]. Early work by McKeeman et
al.[19] and Zeller et al.[34] highlighted its role in quality assurance.
Modern advancements have integrated differential testing into re-
lease engineering pipelines for production-like evaluations [1, 2, 20],
though these processes still rely on manual interventions, leading
to inefficiencies and errors [16].

Recent developments have sought to automate several stages
of release engineering by leveraging Artificial Intelligence (AI)
and Machine Learning (ML) to streamline and enhance testing
processes. These advancements have led to automated tools that
prioritize test cases, classify defects, and even predict potential
failures in the software [5, 8, 9, 14, 18, 21, 23, 25, 28]. Despite these
successes in backend optimizations, much of the focus has been
on the functionality of the tools rather than the user experience of
the developers who use them [29, 30]. As these tools evolve, there
is growing recognition of the importance of integrating Human-
Computer Interaction (HCI) principles to enhance usability and
developer productivity [1, 8].

AI-driven advancements in differential testing have automated
decision-making, but developer-tool interfaces remain static. Tools
often lack feedback, adaptive support, and seamless integration
into workflows, limiting their utility during high-stakes debugging.
Research highlights the need for systems that combine automation
with dynamic, intuitive, and interactive support [1, 3, 8, 30]. This
has fueled demand for HCI innovations emphasizing contextual
awareness, real-time feedback, and adaptive interfaces to meet
developers’ evolving needs.

In this context, research is beginning to focus on building sys-
tems that integrate both AI and HCI principles, thus allowing for
more adaptive, context-aware interfaces that support developers at
every stage of their work. By merging the power of AI in automat-
ing tedious backend processes with HCI’s emphasis on developer-
centered design, it is possible to create systems that not only im-
prove the efficiency and accuracy of differential testing but also
ensure that these tools are usable and effective for developers. This

holistic approach is critical in advancing the field, as it addresses
not only the technical challenges of differential testing but also the
human challenges, ultimately paving the way for more productive
and effective software engineering practices.

6 Conclusion
6.1 Limitations
Because the OCEs’ work is critical, time-sensitive, and laborious,
conducting a study with this population is challenging. While the
five participants provided valuable insights, their views and ex-
periences may not represent the entire team, and their voluntary
participation is subject to the typical selection bias. We conducted
our study collaboratively with a single team, chosen because of its
critical mission, its existing investment in differential testing, and
its enthusiasm for improving work practices. Our findings may not
generalize to other teams doing differential testing, particularly at
other companies. Finally, while our prototype used up-to-date LLM
models, fine-tuned on recent Diffs from the team’s databases, our
early-stage prototype does not have the same usability or engineer-
ing quality of their established tool, which could have influenced
participant feedback.

6.2 Future Work
Building on these findings, future work should focus on enhanc-
ing real-time collaboration features such as direct Diff delegation,
team-based clustering, and shared annotations. Additionally, incor-
porating detailed metadata and rationales for AI predictions would
address transparency concerns and foster greater trust. Advanced
filtering options based on team ownership or historical patterns
could further tailor the tool to individual workflows. Expanding the
tool’s integration with other platforms, such as issue trackers and
code repositories, would streamline transitions from debugging to
resolution. Conducting longitudinal studies to measure the impact
of the redesigned DiffViewer on productivity, developer satisfac-
tion, and software quality over extended periods would provide
valuable insights.

6.3 Conclusions
This study presents the potential of combining AI and HCI prin-
ciples in the design of developer tools. By addressing core pain
points such as cognitive overload, inefficiencies in manual labeling,
and fragmented workflows, the redesigned DiffViewer represents a
significant step forward in differential testing tooling. Features like
clustering, AI-based predictions, and an intuitive block-based UI
empower software engineers to make faster, more informed deci-
sions. However, balancing automation with transparency and trust
remains essential. By addressing current limitations and exploring
further enhancements, future iterations of the DiffViewer can serve
as a model for intelligent, developer-friendly tools that bridge the
gap between technical automation and human usability, advancing
release engineering and software development.
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